Force Field Parameters for Large-Scale Computational Modeling of Sensitized TiO2 Surfaces
نویسندگان
چکیده
Force field parameters for large scale computational modeling of sensitized TiO2-anatase surfaces are developed from ab initio molecular dynamics simulations and geometry optimization based on Density Functional Theory (DFT). The resulting force field, composed of Coulomb, van der Waals and harmonic interactions, reproduces the ab initio structures and the phonon spectra density profiles of TiO2-anatase nanostructures functionalized with catechol, a prototype of an aromatic linker commonly used to sensitize TiO2 nanoparticles with Ru(II)-polypyridyl dyes. In addition, simulations of interfacial electron injection and electron-hole relaxation dynamics demonstrate the capabilities of the resulting molecular mechanics forcefield, as applied in conjunction with mixed quantum-classical methods, for modeling quantum processes that are critical for the overall efficiency of sensitized-TiO2 solar cells.
منابع مشابه
Fabrication of Inorganic Sensitized Solar Cells by Drop Casting Deposition of PbSe and PbTe on the TiO2 Surface
In this work, PbSe and PbTe sensitized TiO2 solar cells were fabricated. PbSe and PbTe nanostructure was deposited on the TiO2 surface via a drop cast method. The fabricated surfaces were examined by atomic force microscopy (AFM). Also the optical properties of the layers were studied by diffuse reflectance spectroscopy (DRS) spectra. The morphology of the surfaces was obtained by scanning elec...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملSynthesis and characterization of Ag-doped TiO2 nanostructure and investigation of its application as dye-sensitized solar cell
A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by doping foreign ion into TiO2 lattice via sol-gel process is reported. DSSCs are based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiency, it is important to increase the electron injection and optical absorption. One pro...
متن کاملEffect of large TiO2 Nanoparticles as Light Scatter in Matrix of Small Nanoparticles to Improve the Efficiency in Dye- Sensitized Solar Cell
In this study, we investigated the effect of using large TiO2 nanoparticles in the matrix of small nanoparticles to improve the performance of dye-sensitized solar cells (DSSCs), as light scatter to increase the light harvesting. The mixed powder was deposited by electrophoretic deposition (EPD) on FTO (F-SnO2 coated glass). It is shown that adding small quantity of larger...
متن کامل